TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

T6M19,JT6M19-AS

T6M19, JT6M19-AS Single-Chip CMOS LSI for LCD Calculators

The T6M19, JT6M19-AS is single-chip microcomputer for 10 -digit + 2-digit scientific calculation.

T6M19, JT6M19-AS is the complete single-chip CMOS LSI for calculator with 10 digits, 67 functions, 3 expression and hexadecimal, octal and binary, statistic calculation, fractional number calculation, and logic operation with the following features.

Features

- 12-digit display plus 2 -digit code at the right margin.
- Scientific and engineering display.

Weight: 1.20 g (typ.)

Mantissa 10 digits plus exponent 2 digits plus negative code 2 digits.

- Other than above

Mantissa 10 digits plus negative code 1 digit.

- 13 kinds of special display
- M: Memory
-: Mantissa and exponent minus
E: Error
INV: Inverse
HYP: Hyperbolic
BIN: Binary mode
OCT: Octal mode
HEX: Hexadecimal mode
SD: Statistic calculation mode
DEG: Degree
RAD: Radian
GRAD: Gradian
(): Parenthesis calculation
- The minus sign of the mantissa is floating minus.
- The arithmetic key operation in clouding Y^{x} or $Y^{1 / x}$ has same sequence as mathematical equation. 6 pending operations are allowed and () are up to continuous 15 levels.
- Fractional number calculation.
- It is possible to convert mutually between decimal, binary, octal and hexadecimal, and the 4 operations in arithmetic in binary, octal and hexadecimal.
- One independent accumulating memory.
- It is possible to convert or fix the display number system by FLO (floating), SCI (scientific) or ENG (engineering) key.
- It is possible to specify decimal part digits ($0 \sim 9$) by FIX key.
- Direct drive for FEM LCD ($1 / 2$ prebias, $1 / 3$ duty).
- Automatic power on clear.
- Low-power consumption. $\mathrm{VG}_{\mathrm{G}}=-1.5 \mathrm{~V}$ single power supply.
- The 67-pin flat package is used.
- Automatic power off (a time for about 10 min).

Pin Assignment (top view)

$\begin{array}{llllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 1617 & 18 & 19 & 2021\end{array}$

System Block Diagram

$\mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$
C3 $=10 \mu \mathrm{~F}$
Note 1: Key resistance $\leqq 5.0 \mathrm{k} \Omega$ at $\mathrm{V}_{\mathrm{G}}=-1.2 \mathrm{~V}$

Connection of LCD

Segment

Common

Key Connection

Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Characteristics	Rymbol	Rating	Unit
Supply voltage	V_{G}	$+0.3 \sim-2.2$	V
Input voltage	V_{IN}	$+0.3 \sim \mathrm{~V}_{\mathrm{G}}-0.3$	$0 \sim 40$
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	$-55 \sim 125$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\mathrm{Stg}}$	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics $\left(\mathrm{V}_{\mathrm{G}}=-1.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} 2}=-3.0 \pm 0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Characteristics	Symbol	Test Circuit	Pin Name	Test Condition	Min	Typ.	Max	Unit
Operating voltage	V_{G}	-	-	-	-1.2	-1.5	-2.0	V
Supply current (I)	IDD WAIT	-	-	$\mathrm{V}_{\mathrm{G}}=-1.5 \mathrm{~V}$, wait	-	2.0	3.0	$\mu \mathrm{A}$
Supply current (II)	IDD OP	-	-	$\mathrm{V}_{\mathrm{G}}=-1.2 \mathrm{~V}$, operate	-	4.5	7.0	$\mu \mathrm{A}$
Supply current (III)	IDD OFF	-	-	$V_{G}=-1.5 \mathrm{~V}$, off	-	-	2.0	$\mu \mathrm{A}$
Oscillating frequency (I)	f_{ϕ} WAIT	-	-	$\mathrm{V}_{\mathrm{G}}=-1.5 \mathrm{~V}$, wait	5.4	9.0	12.6	kHz
Oscillating frequency (II)	$\mathrm{f}_{\phi} \mathrm{OP}$	-	-	$\mathrm{V}_{\mathrm{G}}=-1.5 \mathrm{~V}$, operate	14.4	24.0	33.6	kHz
Frame frequency	f_{F}	-	-	$\mathrm{V}_{\mathrm{G}}=-1.5 \mathrm{~V}$, wait	56.3	93.8	131.3	Hz
"1" input voltage	V_{IH}	-	$\begin{aligned} & \mathrm{K}_{2} \sim \mathrm{~K}_{9} \\ & \text { RESET } \end{aligned}$	-	$\begin{gathered} V_{G} \\ +0.4 \end{gathered}$	-	V_{G}	V
"0" input voltage	VIL	-	$\begin{aligned} & \mathrm{K}_{2} \sim \mathrm{~K}_{9} \\ & \text { RESET } \end{aligned}$	-	$\mathrm{V}_{\text {SS }}$	-	-0.4	V
"1" output voltage	VOH (I)	-	SEGMENT COM1~3	-	$\begin{aligned} & V_{S S 2} \\ & +0.2 \end{aligned}$	-	VSS2	V
"0" output voltage	VOL (I)	-	SEGMENT COM1~3	-	V_{DD}	-	-0.2	V
"M" output voltage	VOH	-	COM1~3	-	$\begin{aligned} & \mathrm{V}_{\mathrm{SS} 1} \\ & +0.2 \end{aligned}$	-	$\begin{aligned} & V_{S S 1} \\ & -0.2 \end{aligned}$	V
"1" output voltage	$\mathrm{V}_{\mathrm{OH}}(\mathrm{II})$	-	$\begin{aligned} & \mathrm{K}_{0} \sim \mathrm{~K}_{9} \\ & \text { RESET } \end{aligned}$	-	$\begin{aligned} & V_{S S 1} \\ & +0.2 \end{aligned}$	-	$\mathrm{V}_{\text {SS } 1}$	V
"0" output voltage	$\mathrm{V}_{\text {OL }}(\mathrm{II})$	-	$\begin{aligned} & \hline \mathrm{K}_{0} \sim \mathrm{~K}_{9} \\ & \text { RESET } \end{aligned}$	-	$V_{D D}$	-	-0.2	V
"1" output resistance	ROH	-	SEGMENT COM1~3	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS2 }}+0.5 \mathrm{~V}$	-	-	70	k Ω
"0" output resistance	Rol	-	SEGMENT COM1~3	$\mathrm{V}_{\text {OUT }}=-0.5 \mathrm{~V}$	-	-	70	k Ω
RESET pull up resistance (I)	RRESETH (I)	-	RESET	$V_{\text {OUT }}=0 \mathrm{~V}$ (Note 2)	156	260	364	k Ω
RESET pull up resistance (II)	$\mathrm{R}_{\text {RESETH }}$ (II)	-	RESET	$V_{\text {OUT }}=0 \mathrm{~V}$ (Note 3)	18	75	300	k Ω
Key pull up resistance (I)	RKEYH (I)	-	$\mathrm{K}_{0} \sim \mathrm{~K}_{9}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{G}}+05 \mathrm{~V}$ (Note 4)	-	-	500	k Ω
Key pull up resistance (II)	RKEYH	-	$\mathrm{K}_{0} \sim \mathrm{~K}_{9}$	$V_{\text {OUT }}=0 \mathrm{~V}$ (Note 5)	60	300	1500	$\mathrm{k} \Omega$
Key RESET pull down resistance	RKEYL RESETL	-	$\begin{aligned} & \hline \mathrm{K}_{0} \sim \mathrm{~K}_{9} \\ & \text { RESET } \end{aligned}$	$\text { VOUT }=-0.5 \mathrm{~V}$ (Note 6)	-	-	25	$\mathrm{k} \Omega$

Note 2, 3, 6: RESET waveform, 1-cycle

Note 4, 5, 6: KEY waveform, 1-cycle

Waveforms for Display

Note 7: f_{ϕ} WAIT $=9 \mathrm{kHz}$

Pad Location Table

Name	X Point	Y Point
$\mathrm{V}_{\text {SS2 }}$	-1783	2330
VSS1	-1894	2102
V_{G}	-1894	1901
TS5	-1894	1690
RESET	-1894	1469
K_{0}	-1894	1070
K_{1}	-1894	789
K_{2}	-1894	547
K_{3}	-1894	265
K4	-1894	23
K_{5}	-1894	-259
K_{6}	-1894	-501
K_{7}	-1894	-782
K_{8}	-1894	-1024
K9	-1894	-1306
COM1	-1894	-1602
A_{1}	-1894	-2023
B_{1}	-1894	-2258
C_{1}	-1513	-2330
A_{2}	-1277	-2330
B_{2}	-1042	-2330
C_{2}	-806	-2330
A_{3}	-571	-2330
B_{3}	-336	-2330
C_{3}	118	-2330
A_{4}	353	-2330
B4	589	-2330
C_{4}	824	-2330
A_{5}	1059	-2330
B_{5}	1295	-2330
C_{5}	1530	-2330
A_{6}	1894	-2234

($\mu \mathrm{m}$)

Name	X Point	Y Point
B_{6}	1894	-1937
C_{6}	1894	-1709
A_{7}	1894	-1482
B_{7}	1894	-1254
C_{7}	1894	-1026
A8	1894	-799
B_{8}	1894	-571
C8	1894	-343
A9	1894	-116
B9	1894	112
C9	1894	332
A_{10}	1894	557
B_{10}	1894	784
C_{10}	1894	1012
A_{11}	1894	1240
B_{11}	1894	1467
C_{11}	1894	1695
A_{12}	1894	1920
B_{12}	1839	2330
C_{12}	1606	2330
S_{1}	1373	2330
S_{2}	1140	2330
S_{3}	902	2330
COM3	565	2330
COM2	295	2330
$V_{\text {DD }}$	-51	2330
TS1	-263	2330
TS2	-484	2330
TS3	-681	2330
TS4	-888	2330
$\mathrm{V}_{\text {A }}$	-1124	2330
V_{B}	-1371	2330

Chip Layout

Pad Layout

Active Element

PAD Pitch $201.3 \mu \mathrm{~m}$

Package Dimensions

Weight: 1.20 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

